Theory Overview of Chiral Magnetic Effect in Heavy-Ion Collisions

Ho-Ung Yee

University of Illinois at Chicago and RIKEN-BNL Research Center

June 8, 2016

RHIC/AGS Users Meeting, BNL, June 7-10, 2016

(Acknowledgment: CME Task Force Meeting)

Plan of the talk

- A question: Is the Chiral Magnetic Wave (CMW) something different from the Chiral Magnetic Effect (CME)?
- Issues of CME in heavy-ion collisions
 - Issues of CME itself
 - Issues related to heavy-ion collision
 - Issues related to other backgrounds of the proposed observables
- What do we need to do?

Chiral Magnetic Effect (CME) and Chiral Separation Effect (CSE)

(Fukushima-Kharzeev-Warringa, Son-Zhitnitsky, Vilenkin)

$$ec{J}_V = rac{eN_c}{2\pi^2}\mu_Aec{B}\,, \quad ec{J}_A = rac{eN_c}{2\pi^2}\mu_Vec{B}\,.$$

Note the $\langle AVV \rangle$ structure

Q: Is the Chiral Magnetic Wave (CMW) something different from the Chiral Magnetic Effect (CME)?

A: CME+CSE+Hydrodynamics = CMW

CMW is the inclusive universal language of CME/CSE in hydrodynamics

$$ec{J}_V = rac{ extstyle N_c e ec{B}}{2\pi^2} \mu_{A} \quad , \quad ec{J}_A = rac{ extstyle N_c e ec{B}}{2\pi^2} \mu_{V}$$

$$ec{J}_V = rac{ extstyle N_c e ec{B}}{2\pi^2} \mu_A \quad , \quad ec{J}_A = rac{ extstyle N_c e ec{B}}{2\pi^2} \mu_V$$

$$ec{J}_V = rac{ extstyle N_c e ec{B}}{2\pi^2} \mu_{A} \quad , \quad ec{J}_{A} = rac{ extstyle N_c e ec{B}}{2\pi^2} \mu_{V}$$

$$ec{J}_V = rac{ extstyle N_c e ec{B}}{2\pi^2} \mu_{A} \quad , \quad ec{J}_A = rac{ extstyle N_c e ec{B}}{2\pi^2} \mu_{V}$$

CMW: Sound Waves of Chiral Charges (Kharzeev-HUY)

Add and subtract CME and CSE to go to Left/Right-handed chiralities

$$egin{align} ec{J}_V &= rac{e extstyle N_c}{2\pi^2} \mu_{ extstyle A} ec{B} \,, \quad ec{J}_{ extstyle A} &= rac{e extstyle N_c}{2\pi^2} \mu_{ extstyle V} ec{B} \,, \ J_{ extstyle A/L} &\equiv rac{1}{2} (J_V \pm J_A) \,. \end{align}$$

Then, we have a "diagonalization" of the CME/CSE

$$ec{J}_R = rac{e N_c}{4\pi^2} \mu_R ec{B} \,, \quad ec{J}_L = -rac{e N_c}{4\pi^2} \mu_L ec{B} \,, \quad \mu_{L/R} pprox rac{1}{lpha} n_{L/R} \,,$$

Hydro charge conservation $\partial_{\mu}J^{\mu}_{L/R}=0$ gives

$$\left(\partial_t + \vec{v}_\chi \cdot \vec{\nabla}\right) n_R = 0 \,, \left(\partial_t - \vec{v}_\chi \cdot \vec{\nabla}\right) n_L = 0 \,, \vec{v}_\chi = rac{e N_c}{4\pi^2 lpha} \vec{B}$$

Two Independent Uni-directional Propagating Waves!

Development of a charge dipole from initial axial charge

$$n_A > 0 \; , \quad n_V = 0 \longrightarrow n_R = \frac{1}{2} n_A \, , \quad n_L = -\frac{1}{2} n_A = -n_R$$

Charge Dipole Probe in RHIC and LHC

$$<$$
 $cos(\phi_1+\phi_2-2\Psi_{RP})>$

Beam Energy Scan

(Phys.Rev.Lett. 113 (2014) 052302)

Development of a charge quadrupole from initial electric charge

(Burnier-Kharzeev-Liao-HUY, Gorba-Miransky-Shovkovy)

$$n_A=0\,,\quad n_V>0\longrightarrow n_R=rac{1}{2}n_V\,,\quad n_L=rac{1}{2}n_V=n_R$$

Prediction:

$$v_2(\pi^-) - v_2(\pi^+) = r \ Q_{init}$$
 with the slope $r > 0$

Linear dependency check

(Phys.Rev.Lett. 114 (2015) 25, 252302)

 $\Delta v_2 = r A_{\pm} + \Delta v_2^0$: Note the intercept Δv_2^0 (Stephanov-HUY)

Beam energy Scan

(Phys.Rev.Lett. 114 (2015) 25, 252302)

A reasonable expectation is:

What should be happening is a mixture of dipole and quadrupole

CMW is the universal language for both phenomena

Four Commonly Raised Issues in CME

- Q: Axial charge is not conserved. Does CME make sense?
- Q: Electromagnetic fields are dynamical. Should't we solve the Maxwell equations with CME?
- Q: Magnetic field is rapidly changing in time. Does CME remain the same?
- Q: How much do we know about CME in the early pre-equilibrium phase of the QGP?

Q: Axial charge is not conserved

Conservation law is modified to $\partial_\mu J_A^\mu = -\frac{1}{ au_R} n_A$ where the relaxation rate is given by

$$rac{1}{ au_B}\sim lpha_s^5\log(1/lpha_s)T+lpha_s m_q^2/T$$

The CMW dispersion relation becomes

(Stephanov-HUY-Yin)

$$\omega = -\frac{i}{2\tau_s} \pm \sqrt{-\frac{1}{4\tau_s^2} + v_\chi^2 k^2}$$

A transition from CMW ($k\gg 1/ au_R$) to pure diffusion ($k\ll 1/ au_R$)

 au_{R} is numerically larger than 10 fm with $lpha_{s}=$ 0.2 and $m_{q}=$ 10 MeV

It is okay to neglect this in heavy-ion collisions

Q: Electromagnetic field is dynamical

Longitudinal Mode:

The CMW dispersion becomes (Kharzeev-HUY)

$$\omega^2 = v_\chi^2 k^2 + m_B^2$$

where

$$u_{\chi} = rac{eN_c}{2\pi^2 lpha} B, \quad m_B \equiv rac{e^2 N_c}{2\pi^2 \sqrt{lpha}} B.$$

CMW becomes "massive"

Numerically, $m_B^{-1} \approx$ 20 fm with $eB \sim m_\pi^2$ and $T \approx$ 200 MeV, the basic reason is the smallness of α_{EM}

It is okay to neglect this in heavy-ion collisions

Q: Electromagnetic field is dynamical Transverse Mode:

Transverse modes become helicity-polarized via the transition from the fermion helicity (axial charge) into the magnetic helicity. For low enough k, the resulting chiral magneto-hydrodynamics features inverse cascades with turbulence (eg. a recent work by Hirono-Kharzeev-Yin and Yamamoto).

Due to the smallness of α_{EM} and μ_A/T , the space-time scale $k \sim \alpha_{EM}\mu_A$ is numerically much larger than 10 fm

It is okay to neglect this in heavy-ion collisions, unless $\mu_{\rm A}/T\sim 1/\alpha_{\rm EM}\sim 100$

Q: Magnetic field is rapidly changing

Magnetic field in QGP medium

(Tuchin, McLerran-Skokov, Gursoy-Kharzeev-Rajagopal)

Faraday Effect with equilibrium QGP conductivity, which can be questioned

CME in the time-changing magnetic field

In frequency space,

$$\vec{J}(\omega) = \sigma_{\chi}(\omega)\vec{B}(\omega)$$

(Kharzeev-Warringa, HUY, Jimenez-HUY)

$$\sigma_{\chi}^{\mathrm{pQCD}}(\omega) pprox \sigma_{0} \left(1 - \frac{2}{3} \frac{\omega}{\omega + i au_{B}^{-1}}
ight) \,, \quad au_{R}^{-1} pprox \frac{1}{36} g^{4} \log(1/g) T$$

Q: CME/CMW in Pre-Equilibrium

A: We don't know well enough

Recent real-time lattice simulation:

(Mueller-Schlichting-Sharma)

AdS/CFT: (Lin-HUY)

(Initial) Thermalization (2): Falling Mass Shell

Dispersion Relation

$$\omega = \sqrt{f(z_s)}k + \Delta\omega$$

where z_s is the holographic location of the mass shell, and $f(z_s) \approx 1$ initially and $f(z_s) \to 0$ when $z_s \to z_H$ (horizon)

 $\Delta\omega$ features characteristics of CMW, and CMW velocity is enhanced by $\sqrt{f(z_s)}$

$$\mathbf{v}_{\chi}^{\mathrm{PreEq}} = \sqrt{f(\mathbf{z}_{s})} + \mathbf{v}_{\chi}^{\mathrm{Eq}}, \quad \mathbf{v}_{\chi}^{\mathrm{Eq}} \equiv \frac{\partial \Delta \omega}{\partial \mathbf{k}}$$

In addition: The amount of initial axial charge is difficult to compute

Recent Glasma simulation: (Mace-Schlichting-Venugopalan)

Other background effects to the charge dipole and quadrupole observables exist, and are sizable

For the charge dipole observable: Local charge conservation and transverse momentum conservation give additional correlations to the two particles (Pratt-Schlichting, Bzdak-Koch-Liao)

For the charge quadrupole observable: Iso-spin transports and viscous corrections give additional contribution to the slope parameter *r*

(Dunlop-Lisa-Sorensen, Hatta-Monnai-Xiao)

Q: What should be done next?

- Devise a way to understand the pre-equilibrium axial dynamics and CME:
 - Interpolate between real-time AdS/CFT and real-time lattice simulations
 - Simulate Vlasov-Wong equation with Chiral Kinetic Theory (Son-Yamamoto, Stephanov-Yin) in the Glasma
- Run realistic anomalous hydro simulations including all possible background effects (the talk by Yuji Hirono):
 - It is planned in the Beam Energy Scan Theory (BEST) topical collaboration

Thank you very much for listening